RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

RECOMBINATION-ENHANCED OF DISLOCATION GLIDE IN 4H-SiC AND GaN UNDER ELECTRON BEAM IRRADIATION

PII
S0023476125040164-1
DOI
10.31857/S0023476125040164
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
670-678
Abstract
The analysis of the investigations of recombination-enhanced dislocation transport in GaN and 4H-SiC is carried out. It is shown that in both crystals, when irradiated with a low-energy electron beam, dislocations can shift even at liquid nitrogen temperature. The activation energies of dislocation glide stimulated by electron beam irradiation are estimated. The results are presented demonstrating practically activation-free migration of double kinks along a 30° partial dislocation with a silicon core in 4H-SiC. It is shown that localized obstacles significantly affect the dislocation transport in GaN both under the action of shear stresses and under irradiation. Nonequilibrium charge carriers introduced into GaN by irradiation not only help to overcome the Peierls barrier, but also stimulate the detachment of dislocations from obstacles.
Keywords
Date of publication
20.03.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Alexander H., Teichler H. // Handbook of Semiconductor Technology / Eds. Jackson K.A., Schroter W. Wiley-VCH, 2000. P. 291. https://doi.org/10.1002/9783527621842.ch6
  2. 2. Maeda K. // Materials and Reliability Handbook for Semiconductor Optical and Electron Devices / Еds. Ueda O., Pearton S.J. New York: Springer Science and Business Media, 2013. P. 263. https://doi.org/10.1007/978-1-4614-4337-7_9
  3. 3. Eberlein T.A.G., Jones R., Blumenau A.T. et al. // Appl. Phys. Lett. 2006. V. 88. 082113. https://doi.org/10.1063/1.2179115
  4. 4. Skowronski M., Ha S. // J. Appl. Phys. 2006. V. 99. 011101. https://doi.org/10.1063/1.2159578
  5. 5. Camassel J., Juillaguet S. // J. Phys. D. 2007. V. 40. P. 6264. https://doi.org/10.1088/0022-3727/40/20/S11
  6. 6. Callahan P.G., Haidet B.B., Jung D. et al. // Phys. Rev. Mater. 2018. V. 2. 081601(R). https://doi.org/10.1103/PhysRevMaterials.2.081601
  7. 7. Ha S., Benamara M., Skowronski M. // Appl. Phys. Lett. 2003. V. 83. P. 4957. https://doi.org/10.1063/1.1633969
  8. 8. Yakimov E.B. // J. Alloys Compd. 2015. V. 627. P. 344. https://doi.org/10.1016/j.jallcom.2014.11.229
  9. 9. Якимов Е.Б. // Кристаллография. 2021. Т. 66. № 4. С. 540. https://doi.org/10.31857/S0023476121040226
  10. 10. Egerton R.F., Li P., Malac M. // Micron. 2004. V. 35. P. 399. https://doi.org/10.1016/j.micron.2004.02.003
  11. 11. Tokunaga T., Narushima T., Yonezawa T. et al. // J. Microscopy. 2012. V. 248. Pt. 3. P. 228. https://doi.org/10.1111/j.1365-2818.2012.03666.x
  12. 12. Bouscaud D., Pesci R., Berveiller S. et al. // Ultramicroscopy. 2012. V. 115. P. 115. https://doi.org/10.1016/j.ultramic.2012.01.018
  13. 13. Yakimov E.E., Yakimov E.B. // J. Alloys Compd. 2020. V. 837. 155470. https://doi.org/10.1016/j.jallcom.2020.155470
  14. 14. Ishikawa Y., Sudo M., Yao Y.-Z. et al // J. Appl. Phys. 2018. V. 123. 225101. https://doi.org/10.1063/1.5026448
  15. 15. Yakimov E.B. // Phys. Status Solidi. C. 2017. V. 14. 1600266. https://doi.org/10.1002/pssc.201600266
  16. 16. Якимов Е.Б. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2018. № 10. С. 66. https://doi.org/10.1134/S0207352818100219
  17. 17. Davidson S.M., Dimitriadis C.A. // J. Microsc. 1980. V. 118. P. 275. https://doi.org/10.1111/j.1365-2818.1980.tb00274.x
  18. 18. Yakimov E.B., Polyakov A.Y., Shchemerov I.V. et al. // Appl. Phys. Lett. 2021. V. 118. 202106. https://doi.org/10.1063/5.0053301
  19. 19. Gsponer A., Knopf M., Gagg P. et al. // Nucl. Instrum. Methods Phys. Res. A. 2024. V. 1064. 169412. https://doi.org/10.1016/j.nima.2024.169412
  20. 20. Yakimov E.B., Regula G., Pichaud B. // J. Appl. Phys. 2013. V. 114. 084903. https://doi.org/10.1063/1.4818306
  21. 21. Idrissi H., Pichaud B., Regula G., Lancin M. // J. Appl. Phys. 2007. V. 101. 113533. https://doi.org/10.1063/1.2745266
  22. 22. Orlov V.I., Regula G., Yakimov E.B. // Acta Mater. 2017. V. 139. P. 155. https://doi.org/10.1016/j.actamat.2017.07.046
  23. 23. Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2022. V. 219. 2200119. https://doi.org/10.1002/pssa.202200119
  24. 24. Orlov V.I., Yakimov E.E., Yakimov E.B. // Phys. Status Solidi. A. 2019. V. 216. 1900151. https://doi.org/10.1002/pssa.201900151
  25. 25. Sudo M., Ishikawa Y., Yao Y.-Z. et al. // Mater. Sci. Forum. 2018. V. 924. P. 151. https://doi.org/10.4028/www.scientific.net/MSF.924.151
  26. 26. Yakimov E.E., Yakimov E.B. // J. Phys. D. 2022. V. 55. 245101. https://doi.org/10.1088/1361-6463/ac5c1b
  27. 27. Yamashita Y., Nakata R., Nishikawa T. et al. // J. Appl. Phys. 2018. V. 123. 161580. https://doi.org/10.1063/1.5010861
  28. 28. Konishi K., Fujita R., Shima A. et al. // Mater. Sci. Forum. 2017. V. 897. P. 214. https://doi.org/10.4028/www.scientific.net/MSF.897.214
  29. 29. Tawara T., Matsunaga S., Fujimoto T. et al. // J. Appl. Phys. 2018. V. 123. 025707. https://doi.org/10.1063/1.5009365
  30. 30. Yakimov E.E., Yakimov E.B., Orlov V.I., Gogova D. // Superlattices and Microstructures. 2018. V. 120. P. 7. https://doi.org/10.1016/j.spmi.2018.05.014
  31. 31. Ohno Y., Yonenaga I., Miyao K. et al. // Appl. Phys. Lett. 2012. V. 101. 042102. https://doi.org/10.1063/1.4737938
  32. 32. Regula G., Lancin M., Pichaud B. et al. // Philos. Mag. 2013. V. 93. P. 1317. https://doi.org/10.1080/14786435.2012.745018
  33. 33. Savini G. // Phys. Status Solidi. C. 2007. V. 4. P. 2883. https://doi.org/10.1002/pssc.200675433
  34. 34. Yang J., Izumi S., Muranaka R. et al. // Mech. Eng. J. 2015. V. 2. № 4. P. 1. https://doi.org/10.1299/mej.15-00183
  35. 35. Miao M.S., Limpijumnong S., Lambrecht W.R.L. // Appl. Phys. Lett. 2001. V. 79. P. 4360. https://doi.org/10.1063/1.1427749
  36. 36. Galeckas A., Linnoris J., Pirouz P. // Phys. Rev. Lett. 2006. V. 96. 025502. https://doi.org/10.1103/PhysRevLett.96.025502
  37. 37. Caldwell J.D., Stahlbush R.E., Ancona M.G. et al. // J. Appl. Phys. 2010. V. 108. 044503 https://doi.org/10.1063/1.3467793
  38. 38. Pirouz P. // Phys. Status Solidi. A. 2013. V. 210. P. 181. https://doi.org/10.10.1002/pssa.201200501
  39. 39. Mannen Y., Shimada K., Asada K. et al. // J. Appl. Phys. 2019. V. 125. 085705. https://doi.org/10.1063/1.5074150
  40. 40. Iijima A., Kimoto T. // Appl. Phys. Lett. 2020. V. 116. 092105. https://doi.org/10.1063/1.5143690
  41. 41. Miyanagi T., Kamata I., Tsuchida H. et al. // Appl. Phys. Lett. 2006. V. 89. 062104. https://doi.org/10.1063/1.2234740
  42. 42. Caldwell J.D., Stahlbush R.E., Hobart K.D. et al. // Appl. Phys. Lett. 2007. V. 90. 143519. https://doi.org/10.1063/1.2719650
  43. 43. Caldwell J.D., Glembocki O.J., Stahlbush R.E. et al. // J. Electron. Mater. 2008. V. 37. P. 699. https://doi.org/10.1007/s11664-007-0311-5
  44. 44. Okada A., Nishio J., Iijima R. et al. // Jpn. J. Appl. Phys. 2018. V. 57. 061301. https://doi.org//10.7567/JJAP.57.061301
  45. 45. Feklisova O.V., Yakimov E.E., Yakimov E.B. // Appl. Phys. Lett. 2020. V. 116. 172101. https://doi.org/10.1063/5.0004423
  46. 46. Maeda K., Murata K., Kamata I. et al. // Appl. Phys. Express. 2021. V. 14. 044001. https://doi.org/10.35848/1882-0786/abeaf8
  47. 47. Iijima A., Kimoto T. // J. Appl. Phys. 2019. V. 126. 105703. https://doi.org/10.1063/1.5117350
  48. 48. Bradby J.E., Kucheyev S.O., Williams J.S. et al. // Appl. Phys. Lett. 2002. V. 80. P. 383. https://doi.org/10.1063/1.1436280
  49. 49. Jahn U., Trampert A., Wagner T. et al. // Phys. Status Solidi. A. 2002. V. 192. P. 79. https://doi.org/10.1002/1521-396X (200207)192:13.0.CO;2-5
  50. 50. Jian S.R. // Appl. Surf. Sci. 2008. V. 254. P. 6749. https://doi.org/10.1016/j.apsusc.2008.04.078
  51. 51. Huang J., Xu K., Gong X.J. et al. // Appl. Phys. Lett. 2011. V. 98. 221906. https://doi.org/10.1063/1.3593381
  52. 52. Orlov V.I., Vergeles P.S., Yakimov E.B. et al. // Phys. Status Solidi. A. 2019. V. 216. 1900163. https://doi.org/10.1002/pssa.201900163
  53. 53. Orlov V.I., Polyakov A.Y., Vergeles P.S. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. 026004. https://doi.org/10.1149/2162-8777/abe4e9
  54. 54. Yakimov E.B., Kulanchikov Y.O., Vergeles P.S. // Micromachines. 2023. V. 14. 1190. https://doi.org/10.3390/mi14061190
  55. 55. Maeda K., Suzuki K., Ichihara M. et al. // Phys. B. Condens. Matter. 1999. V. 273. P. 134. http://dx.doi.org/10.1016/S0921-4526 (99)00424-X
  56. 56. Tomiya S., Goto S., Takeya M. et al. // Phys. Status Solidi. A. 2003. V. 200. P. 139. http://dx.doi.org/10.1002/pssa.200303322
  57. 57. Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Appl. Phys. Lett. 2015. V. 106. 132101. http://dx.doi.org/10.1063/1.4916632
  58. 58. Якимов Е.Б., Вергелес П.С. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2016. № 9. С. 81. http://dx.doi.org/10.7868/S0207352816090171
  59. 59. Yakimov E.B., Vergeles P.S., Polyakov A.Y. et al. // Jpn. J. Appl. Phys. 2016. V. 55. 05FM03. http://doi.org/10.7567/JJAP.55.05FM03
  60. 60. Medvedev O.S., Vyvenko O.F., Bondarenko A.S. et al. // AIP Conf. Proc. 2016. V. 1748. 020011. http://dx.doi.org/10.1063/1.4954345
  61. 61. Vergeles P.S., Orlov V.I., Polyakov A.Y. et al. // J. Alloys Compd. 2019. V. 776. P. 181. http://doi.org/10.1063/1.4954345
  62. 62. Vergeles P.S., Kulanchikov Yu.O., Polyakov A.Y. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. 015003. http://dx.doi.org/10.1149/2162-8777/ac4bae
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library