RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Composite Perfluorinated Membranes Modified by Polyvinyl Alcohol Cross-Linked with Sulfosuccinic Acid

PII
S30345510S0023476125050054-1
DOI
10.7868/S3034551025050054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
744-758
Abstract
The effect of polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid on the structure, morphology, physical, mechanical and electrochemical properties of composite membranes made of domestic perfluorinated copolymer, an analogue of Nafion, and PVA was studied. An increase in the amount of cross-linked PVA in the membrane leads to an increase in proton conductivity. The crystallinity of the composites depends on the proportion of the cross-linking agent. The morphology of the membrane surfaces varies significantly: the lower surface has a uniform microstructure, and the upper surface forms three-dimensional folded structures during self-organization of polymer chains in the surface layer. According to energy-dispersive analysis, the two layers of the membrane differ significantly in chemical composition, which is illustrated by the distribution profiles of fluorine across the membrane thickness. The observed structural and morphological features of the membranes explain the differences in their proton conductivity.
Keywords
Date of publication
03.07.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. https://doi.org/10.1021/acs.chemrev.6b00159
  2. 2. Sigwadi R., Nemavhola F. // Membranes. 2023. V. 13. P. 887. https://doi.org/10.3390/membranes13120887
  3. 3. Giancola S., Zaton M., Reyes-Carmona A. et al. // J. Membr. Sci. 2019. V. 570–571. P. 69. https://doi.org/10.1016/j.memsci.2018.09.063
  4. 4. Wang H., Zhang J., Ning X. et al. // Int. J. Hydrogen Energy. 2021. V. 46. P. 25225. doi.org/10.1016/j.ijhydene.2021.05.048
  5. 5. Chen T., Lv B., Sun S. et al. // Membranes. 2023. V. 13. P. 308. https://doi.org/10.3390/membranes13030308
  6. 6. Prykhodko Y., Fatyeyeva K., Hespel L. et al. // Chem. Engin. J. 2021. V. 409. P. 127329. https://doi.org/10.1016/j.cej.2020.127329
  7. 7. Gagliardi G.G., Ibrahim A., Borello D. et al. // Molecules. 2020. V. 25. P. 1712. https://doi.org/10.3390/molecules25071712
  8. 8. Arslanova A.A., Sanginov E.A., Dobrovol'skii Yu.A. // Rus. J. Electrochem. 2018. V. 54. P. 318. https://doi.org/10.1134/S1023193518030035
  9. 9. Ali N., Ali F., Khan S. et al. // J. Mol. Struct. 2021. V. 1231. P. 129940. https://doi.org/10.1016/j.molstruc.2021.129940
  10. 10. Boaretti C., Pasquini L., Sood R. et al. // J. Membr. Sci. 2018. V. 545. P. 66. http://dx.doi.org/10.1016/j.memsci.2017.09.055
  11. 11. Фалина И.В., Березина Н.П. // Высокомол. соед. Сер. Б. 2010. Т. 52. С. 715.
  12. 12. Bolto B., Tran T., Hoang M. et al. // Prog. Polym. Sci. 2009. V. 34. P. 969. https://doi.org/10.1016/j.progpolymsci.2009.05.003
  13. 13. Lyozova O.S., Zagrebelny O.A., Krasnopeeva E.L. et al. // Glass Phys. Chem. 2021. V. 47. P. 173. https://doi.org/10.1134/S1087659621020061
  14. 14. Lezova O.S., Myasnikov D.V., Shilova O.A. et al. // Int. J. Hydrogen Energy. 2022. V. 47. P. 4846. https://doi.org/10.1016/j.ijhydene.2021.11.158
  15. 15. Barbashov V.I., Chaika E.V. // Физика и техника высоких давлений. 2019. Т. 29. С. 116.
  16. 16. Barbashov V.I., Chaika E.V. // Физика и техника высоких давлений. 2021. Т. 31. С. 39.
  17. 17. Dong F., Xu S., Wu X. et al. // Separ. Purificat. Technol. 2021. V. 267. P. 118629. https://doi.org/10.1016/j.seppur.2021.118629
  18. 18. Rhim J., Park H., Lee C. et al. // J. Membr. Sci. 2004. V. 238. P. 143. https://doi.org/10.1016/j.memsci.2004.03.030
  19. 19. Rao A.S., Rashmi K.R., Manjunatha D.V. et al. // Mat. Today Proc. 2021. V. 35. P. 344. https://doi.org/10.1016/j.matpr.2020.02.093
  20. 20. Molla S., Compan V., Gimenez E. et al. // Int. J. Hydrogen Energy. 2011. V. 36. P. 9886. https://doi.org/10.1016/j.ijhydene.2011.05.074
  21. 21. Ivanchev S.S., Likhomanov V.S., Primachenko O.N. et al. // Petr. Chem. 2012. V. 52. P. 453. https://doi.org/10.1134/S0965544112070067
  22. 22. Primachenko O.N., Odinokov A.S., Marinenko E.A. et al. // J. Fluor. Chem. 2021. V. 244. P. 109736. https://doi.org/10.1016/j.jfluchem.2021.109736
  23. 23. Kim H., Lee S., Kim S. et al. // J. Mater. Sci. 2017. V. 52. P. 2400. https://doi.org/10.1007/s10853-016-0534-z
  24. 24. De Bonis C., Cozzi D., Mecheri B. et al. // Electrochim. Acta. 2014. V. 147. P. 418. https://doi.org/10.1016/j.electacta.2014.09.135
  25. 25. Сафронова Е.Ю., Воропаева Д.Ю., Новикова С.А. и др. // Мембраны и мембранные технологии. 2022. Т. 12. С. 47. https://doi.org/10.1134/S221811722201007
  26. 26. Примаченко О.Н., Кульвелис Ю.В., Лебедев В.Т. и др. // Мембраны и мембранные технологии. 2020. Т. 10. С. 3. https://doi.org/10.1134/S221811722001006X
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library