RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

SURFACE PROPERTIES AND NUCLEATION OF LINEAR ACENE CRYSTALS UNDER GROWTH FROM VAPOR AND SOLUTION

PII
S30345510S0023476125050077-1
DOI
10.7868/S3034551025050077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
767-782
Abstract
The paper presents the results of modeling the surface energy of the (100), (010), (001), (110) and (110) faces of linear acene crystals (naphthalene, anthracene, tetracene and pentacene) using the OPLS force field method and the density functional theory of the B3LYP/6-31G(d,p) level. The modeling was performed using the single crystal X-ray diffraction refined crystal structures of linear acenes. For anthracene, tetracene and pentacene crystals, the surface energy of the (001) face was experimentally estimated using the contact angle method. Expressions for the critical sizes of crystal nuclei in homogeneous and heterogeneous processes under conditions of growth from vapor and solution were obtained and analyzed using the classical thermodynamic approach and taking into account the anisotropy of the surface energy.
Keywords
Date of publication
30.04.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Постников В.А., Лясникова М.С., Кулишов А.А. и др. // ФТТ. 2019. Т. 61. С. 2322. https://doi.org/10.21883/ftt.2019.12.48544.42ks
  2. 2. Юрасик Г.А., Кулишов А.А., Лебедев-Степанов П.В и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 2. С. 78. https://doi.org/10.31857/s1028096021020163
  3. 3. Schweicher G., Olivier Y., Lemaur V. et al. // Isr. J. Chem. 2014. V. 54. P. 595. https://doi.org/10.1002/ijch.201400047
  4. 4. Bruevich V.V., Glushkova A.V., Poimanova O.Y. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 6315. https://doi.org/10.1021/acsami.8b20700
  5. 5. Postnikov V.A., Odarchenko Y.I., Iovlev A.V. et al. // Cryst. Growth Des. 2014. V. 14. № 4. P. 1726. https://doi.org/10.1021/cg401876a
  6. 6. Kitaigorodsky A.I., Ahmed N.A. // Acta Cryst. A. 1972. V. 28. P. 207. https://doi.org/10.1107/S0567739472000439
  7. 7. Nabok D., Puschnig P., Ambrosch-Draxl C. // Phys. Rev. B. 2008. V. 77. P. 245316. https://doi.org/10.1103/PhysRevB.77.245316
  8. 8. Massaro F.R., Moret M., Bruno M. et al. // Cryst. Growth Des. 2012. V. 12. P. 982. https://doi.org/10.1021/cg201458g
  9. 9. Massaro F.R., Moret M., Bruno M. et al. // Cryst. Growth Des. 2011. V. 11. P. 4639. https://doi.org/10.1021/cg200924m
  10. 10. Northrup J.E., Tiago M.L., Louie S.G. // Phys. Rev. B. 2002. V. 66. P. 121404(R). https://doi.org/10.1103/PhysRevB.66.121404
  11. 11. Drummy L.F., Miska P.K., Alberts D. et al. // J. Phys. Chem. B. 2006. V. 110. P. 6066. https://doi.org/10.1021/jp054951g
  12. 12. Ребиндер П.А., Щукин Е.Д. // УФН. 1972. Т. 108. С. 3. https://doi.org/10.3367/ufnr.0108.197209a.0003
  13. 13. Джейкок М., Парфит Д. Химия поверхностей раздела фаз. М.: Мир, 1984. 269 с.
  14. 14. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206
  15. 15. Kulishov A.A., Yurasik G.A., Grebenev V.V. et al. // Crystallography Reports. 2022. V. 67. P. 1001. https://doi.org/10.1134/S1063774522060153
  16. 16. Postnikov V.A., Kulishov A.A., Yurasik G.A. et al. // Crystals. 2023. V. 13. P. 999. https://doi.org/10.3390/cryst13070999
  17. 17. Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK. 2018.
  18. 18. Petrícek V., Dušek M., Palatinus L. // Z. Krist. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  19. 19. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604. https://doi.org/10.1107/S0108767304022433
  20. 20. Кулишов А.А., Юрасик Г.А., Лясникова М.С. и др. // Кристаллография. 2024. Т. 69. С. 330. https://doi.org/10.31857/S0023476124020171
  21. 21. Юрасик Г.А., Кулишов А.А., Гиваргизов М.Е. и др. // Письма в ЖТФ. 2021. Т. 47. С. 40. https://doi.org/10.21883/pjtf.2021.23.51783.18983
  22. 22. Tadmor R. // Langmuir. 2004. V. 186. P. 7659. https://doi.org/10.1021/la049410h
  23. 23. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  24. 24. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. P. 10947. https://doi.org/10.1021/ja9621760
  25. 25. Постников В.А., Кулишов А.А., Лясникова М.С и др. // Журн. физ. химии. 2021. Т. 95. С. 1101. https://doi.org/10.31857/s0044453721070220
  26. 26. Piranej S., Turner D.A., Dalke S.M. et al. // CrystEngComm. 2016. V. 18. P. 6062. https://doi.org/10.1039/c6ce00728g
  27. 27. Oddershede J., Larsen S. // J. Phys. Chem. A. 2004. V. 108. P. 1057. https://doi.org/10.1021/jp036186g
  28. 28. Asher M., Angerer D., Korobko R. et al. // Adv. Mater. 2020. V. 32. P. 1908028. https://doi.org/10.1002/adma.201908028
  29. 29. Holmes D., Kumaraswamy S., Matzger A.J. et al. // Chem. – A Eur. J. 1999. V. 5. P. 3399. https://doi.org/10.1002/ (SICI)1521-3765(19991105)5:113.0.CO;2-V
  30. 30. Постников В.А., Кулишов А.А., Юрасик Г.А. и др. // Кристаллография. 2022. Т. 67. С. 652.https://doi.org/10.31857/S0023476122040130
  31. 31. Torres-Gómez L.A., Barreiro-Rodríguez G., Galarza-Mondragón A. // Thermochim. Acta. 1988. V. 124. P. 229.https://doi.org/10.1016/0040-6031 (88)87025-4
  32. 32. Rojas A., Orozco E. // Thermochim. Acta. 2003. V. 405. P. 93.https://doi.org/10.1016/S0040-6031 (03)00139-4
  33. 33. Ribeiro da Silva M.A.V., Monte M.J.S., Santos L.M.N.B.F. // J. Chem. Thermodyn. 2006. V. 38. P. 778.https://doi.org/10.1016/j.jct.2005.08.013
  34. 34. Roux M.V., Temprado M., Chickos J.S. et al. // J. Phys. Chem. Ref. Data. 2008. V. 37. P. 1855.https://doi.org/10.1063/1.2955570
  35. 35. Oja V., Suuberg E.M. // J. Chem. Eng. Data. 1998. V. 43. P. 486.https://doi.org/10.1021/je970222l
  36. 36. De Kruif C.G. // J. Chem. Thermodyn. 1980. V. 12. P. 243.https://doi.org/10.1016/0021-9614 (80)90042-7
  37. 37. Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С. и др. Современная кристаллография. Т. 3. Образование кристаллов. М.: Наука, 1980. 408 с.
  38. 38. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382.https://doi.org/10.1107/S0021889807003986
  39. 39. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. М.: Высшая школа, 2004. 445 с.
  40. 40. Musumeci C., Cascio C., Scandurra A. et al. // Surf. Sci. 2008. V. 602. P. 993.https://doi.org/10.1016/j.susc.2007.12.029
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library