Temperature influence on the stability of the precursor cluster of the thermolysin crystal
Table of contents
Share
QR
Metrics
Temperature influence on the stability of the precursor cluster of the thermolysin crystal
Annotation
PII
S0023476124040165-1
Publication type
Article
Status
Published
Authors
Y. V. Kordonskaya 
Occupation: Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics
Affiliation:
National Research Centre “Kurchatov Institute”
NRC “Kurchatov Institute”
Pages
694-699
Abstract
We used the molecular dynamics method to assess the stability of the precursor-cluster (hexamer) of thermolysin crystal over a wide range of temperatures (10–90°C). The simulation results showed that as the temperature increases, the stability of the hexamer, in general, decreases, however, the hexamer does not dissociate at any of the considered temperatures. At a temperature of 60°C, an increase in the stability of the hexamer was observed. This value is close to the temperature of maximum enzymatic activity of thermolysin (70°C). Based on the analysis of the results, it was assumed that the crystallization of thermolysin could be carried out at 60°C.
Acknowledgment
Ministry of Science and Higher Education (075-15-2021-1363). Government of the Russian Federation.
Received
22.09.2024
Number of purchasers
0
Views
16
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Marchenkova M.A., Boikova A.S., Ilina K.B. et al. // Acta Naturae. 2023. V. 15. № 1. P. 58. https://doi.org/10.32607/ACTANATURAE.11815

2. Du S., Wankowicz S.A., Yabukarski F. et al. // bioRxiv. 2023. https://doi.org/10.1101/2023.05.05.539620

3. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2022. V. 12. № 11. P. 1645. https://doi.org/10.3390/CRYST12111645

4. Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. № 12. P. 3058. https://doi.org/10.1080/07391102.2018.1507839

5. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Mend. Commun. 2023. V. 33. № 2. P. 225. https://doi.org/10.1016/J.MENCOM.2023.02.024

6. van den Burg B., Eijsink V. // Handbook of Proteolytic Enzymes. 2013. V. 1. P. 540. https://doi.org/10.1016/B978-0-12-382219-2.00111-3

7. Lam M.P.Y., Lau E., Liu X. et al. // Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists. 2012. P. 307. https://doi.org/10.1016/B978-0-12-381373-2.00085-5

8. Adekoya O.A., Sylte I. // Chem. Biol. Drug. Des. 2009. V. 73. № 1. P. 7. https://doi.org/10.1111/J.1747-0285.2008.00757.X

9. DeLano W.L. // The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015.

10. Jurrus E., Engel D., Star K. et al. // Protein Sci. 2018. V. 27. № 1. P. 112. https://doi.org/10.1002/PRO.3280

11. Van Der Spoel D., Lindahl E., Hess B. et al. // J. Comput. Chem. 2005. V. 26. № 16. P. 1701. https://doi.org/10.1002/jcc.20291

12. Lindorff-Larsen K., Piana S., Palmo K. et al. // Proteins: Structure, Function and Bioinformatics. 2010. V. 78. № 8. P. 1950. https://doi.org/10.1002/prot.22711

13. Horn H.W., Swope W.C., Pitera J.W. et al. // J. Chem. Phys. 2004. V. 120. № 20. P. 9665. https://doi.org/10.1063/1.1683075

14. Dimitropoulos D., Ionides J., Henrick K. // Curr. Protoc. Bioinf. 2006. P. 14.3.1–14.3.3.

15. Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O. // J. Comput. Chem. 2011. V. 32. № 10. P. 2319. https://doi.org/10.1002/JCC.21787

16. Gowers R.J., Linke M., Barnoud J. et al. // 15th Python in Science Conference, Los Alamos, NM (United States), Sep 11. 2016. P. 98. https://doi.org/10.25080/Majora629e541a-00e

17. Sousa Da Silva A.W., Vranken W.F. // BMC Res Notes. 2012. V. 5. № 1. P. 1. https://doi.org/10.1186/1756-0500-5-367/FIGURES/3

18. Essmann U., Perera L., Berkowitz M.L. et al. // J. Chem. Phys. 1995. V. 103. P. 8577. https://doi.org/10.1063/1.470117

19. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://doi.org/10.1063/1.448118

20. Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. № 5. P. 2662. https://doi.org/10.1063/1.443248

21. Van Gunsteren W.F., Berendsen H.J.C. // Mol. Simul. 1988. V. 1. № 3. P. 173. https://doi.org/10.1080/08927028808080941

22. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. // J. Comput Chem. 1997. V. 18. P. 1463. https://doi.org/10.1002/ (SICI)1096-987X(199709)18:123.0.CO;2-H

Comments

No posts found

Write a review
Translate