Analysis of crystal structure of epitaxial nanoheterostructures with multiple pseudomorphic quantum wells {In<sub>х</sub>Ga<sub>1</sub><sub>–х</sub>As/GaAs} on GaAs (100), (110) AND (111) )<I>А</I> substrates
Table of contents
Share
QR
Metrics
Analysis of crystal structure of epitaxial nanoheterostructures with multiple pseudomorphic quantum wells {In<sub>х</sub>Ga<sub>1</sub><sub>–х</sub>As/GaAs} on GaAs (100), (110) AND (111) )<I>А</I> substrates
Annotation
PII
S0023476125010184-1
Publication type
Article
Status
Published
Authors
Е. А. Klimov 
Affiliation: National Research Centre “Kurchatov Institute”
Pages
133-140
Abstract
The crystal structure of {In0.1Ga0.9As/GaAs} × 10 and {In0.2Ga0.8As/GaAs} × 10 epitaxial multilayer films on GaAs substrates with different orientations has been studied (100), (110), (111)A in order to identify features that may be related to the previously discovered increased efficiency of terahertz radiation generation in films with orientations (110) and (111)A. Significant concentrations of twins and package defects were found in films on non-standard GaAs (110) and (111)A substrates. The composition and thicknesses of individual layers of heterostructures on GaAs (100) substrates have been refined by analyzing thickness fluctuations on diffraction reflection curves.
Received
04.04.2025
Number of purchasers
0
Views
14
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Naftaly M., Vieweg N., Deninger A. // Sensors. 2019. V. 19. P. 4203. https://doi.org/ 10.3390/s19194203

2. Consolino L., Bartalini S., De Natale P. // J. Infrared Millim. Terahertz Waves. 2017. V. 38. P. 1289.

3. Hafez H.A., Chai X., Ibrahim A. et al. // J. Opt. 2016. V. 18. P. 093004. https://doi.org/10.1088/2040-8978/18/9/093004

4. Dhillon S.S., Vitiello M.S., Linfield E.H. et al. // J. Phys. D. 2017. V. 50. P. 043001. https://doi.org/10.1088/1361-6463/50/4/043001

5. Krotkus A. // J. Phys. D. 2010. V. 43. P. 273001. https://doi.org/10.1088/0022-3727/43/27/273001

6. Burford N.M., El-Shenawee M.O. // Opt. Eng. 2017. V. 56. P. 010901. https://doi.org/10.1117/1.OE.56.1.010901

7. Apostolopoulos V., Barnes M.E. // J. Phys. D. 2014. V. 47. P. 374002. https://doi.org/10.1088/0022-3727/47/37/374002

8. Castro-Camus E., Alfaro M. // Photon. Res. 2016. V. 4. P. A36. https://doi.org/10.1364/PRJ.4.000A36

9. Ilg M., Ploog K.H., Trampert A. // Phys. Rev. B. 1994. V. 50. № 23. P. 17111. https://doi.org/10.1103/PhysRevB.50.17111

10. Климов Е.А., Клочков А.Н., Солянкин П.М. и др. // Квантовая электроника. 2024. Т. 54. № 1. С. 43.

11. Шик А.Я. Сверхрешетка // Большая российская энциклопедия: научно-образовательный портал. https://bigenc.ru/c/sverkhreshiotka-a2f3e5/?v=5490666

12. Yerino Christopher D., Liang Baolai, Huffaker Diana L. et al. // J. Vac. Sci. Technol. B. 2017. V. 35. P. 010801. https://doi.org/10.1116/1.4972049

13. Климов Е.А., Пушкарев С.С., Клочков А.Н. и др. // Микроэлектроника. 2023. Т. 52. № 3. С. 167. https://doi.org/10.31857/S054412692370031X

14. Климов Е.А., Пушкарев С.С., Клочков А.Н. // Нано- и микросистемная техника. 2022. Т. 24. № 6. С. 283. https://doi.org/10.17587/nmst.24.283-287

Comments

No posts found

Write a review
Translate